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1 Introduction

These notes are written for the Bridgeland stability learning seminar at Harvard. The goal is to discuss stability
conditions on quiver representations. These notes are heavily based on [KJ16] (for basic background on quivers) and
[Bal].

1.1 Conventions
We always work over the ground field C.

2 Quiver representations

2.1 Quivers
First, a brief overview of generalities on quivers. For more details, see [KJ16].

Definition 2.1 (quiver): A quiver is a directed graph.

We typically denote a quiver by −→𝑄 . We’ll denote the set of vertices by 𝐼 and the set of directed edges by Ω. For an
edge 𝑒 ∈ Ω, we’ll write 𝑒 : 𝑖 → 𝑗 to indicate that it goes from 𝑖 to 𝑗 , and write 𝑒ℎ to denote the head of 𝑒 , and 𝑒𝑡
to denote the tail of 𝑒 . If we forget the directions of the edges in −→𝑄 , then we get a graph, which we will denote by
𝑄 .
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For our purposes, we always assume that 𝐼 ,Ω are finite, and that −→𝑄 is connected.

Definition 2.2 (acyclic): We say a quiver −→𝑄 is acyclic if it has no oriented cycles.

2.2 Representations of quivers

Definition 2.3 (representation): Let −→𝑄 be a quiver. Then a representation 𝑉 of −→𝑄 is the data of:
• Vector spaces 𝑉𝑖 for each 𝑖 ∈ 𝐼 ,
• Linear maps 𝑥𝑒 : 𝑉𝑖 → 𝑉𝑗 for each 𝑒 : 𝑖 → 𝑗 ∈ Ω.

We only consider finite-dimensional representations in these notes.

Definition 2.4: Amorphism of representations 𝑓 : 𝑉 →𝑊 is a collection of operators 𝑓𝑖 : 𝑉𝑖 →𝑊𝑖 for each
𝑖 ∈ 𝐼 , which commute with the operators 𝑥𝑒 . The morphisms 𝑉 →𝑊 form a vector space and we denote it by
Hom−→

𝑄
(𝑉 ,𝑊 ), or simply by Hom(𝑉 ,𝑊 ).

Definition 2.5 (Rep
−→
𝑄 ):These two combine to give us the category of (finite-dimensional) representations

of a quiver −→𝑄 , which we denote by Rep
−→
𝑄 . We denote its bounded derived category by 𝐷𝑏 (−→𝑄 ) B 𝐷𝑏 (Rep−→𝑄 ).

Rep
−→
𝑄 has many of the standard operations that we’re familiar with; these include direct sums, subrepresentations,

quotient representations, kernels, and images. This makes Rep−→𝑄 into an C-linear abelian category. Actually, the
reason for this is due to the path algebra.

2.3 Path algebra

Fix a quiver −→𝑄 . A path in −→𝑄 is just a sequence of edges so that the tail of one edge is the head of the next. The
length of a path is just the number of edges in the sequence. We allow for length 0 paths, which we denote by 𝑒𝑖 for
𝑖 ∈ 𝐼 . Finally, we define multiplication of paths by concatenating them if the tail of first path is the head of the
second path, and zero otherwise.

Definition 2.6 (path algebra): The path algebra C
−→
𝑄 is the C-algebra with basis given by all paths in −→𝑄

(including length 0), with multiplication given by multiplication of paths.

Here are some immediate properties:

a) C−→𝑄 is an associative algebra with unit 1 =
∑

𝑖∈𝐼 𝑒𝑖 .

b) C−→𝑄 is naturally Z≥0-graded by path length.

c) C−→𝑄 is finite-dimensional iff −→𝑄 contains no oriented cycles.

d) The length-zero paths 𝑒𝑖 are indecomposable projections summing to 1.

The important point is that:

Theorem 2.7:The category of −→𝑄 -representations, not necessarily finite-dimensional, is equivalent to the cate-
gory of left C−→𝑄 -modules.

If we start with a −→𝑄 -representation 𝑉 , then we get a C−→𝑄 -module 𝑀 by setting 𝑀 B
⊕

𝑖∈𝐼 𝑉𝑖 , with the path 𝑒 ∈ Ω

acting by 𝑥𝑒 . On the other hand, from aC−→𝑄 -module𝑀 , we recover a−→𝑄 -representation𝑉 by setting𝑉𝑖 B 𝑒𝑖𝑀 , and for
𝑒 : 𝑖 → 𝑗 ∈ Ω, setting 𝑥𝑒 to be the operator induced by the path 𝑒 , sending 𝑒𝑖𝑀 → 𝑒 𝑗𝑀 since 𝑒 = 𝑒 𝑗 ·𝑒 ·𝑒𝑖 ∈ C

−→
𝑄 .
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Therefore, we easily see that Rep−→𝑄 is abelian and inherits all the usual notions from the theory of modules over
associative algebras. In particular:

Definition 2.8:We have notions of simple, semisimple, and indecomposable representations in Rep
−→
𝑄 .

Write Ind(−→𝑄 ) to be the set of isomorphism classes of nonzero indecomposable representations of Rep−→𝑄 .

Theorem 2.9: The simple representations of an acyclic quiver are 𝑆 (𝑖) for 𝑖 ∈ 𝐼 , which are the representations
given by a single one-dimensional vector space at vertex 𝑖 , zero for every other vertex, and every edge is the
zero operator.

Proof. Suppose 𝑉 is a simple representation. Pick some vertex 𝑖 ∈ 𝐼 such that 𝑉𝑖 ≠ 0, and 𝑖 is “maximal” in the
sense that for every edge 𝑖 → 𝑗 , then𝑉𝑗 = 0. This can be done because there are no oriented cycles. Then𝑉𝑖 itself is
a subrepresentation (change every other vector space to 0 and every edge to the zero operator; we also are abusing
notation here). By simplicity of 𝑉 , it must be true that 𝑉 = 𝑉𝑖 .
On the other hand, it’s obvious that every 𝑆 (𝑖) is simple. □

So the simple representations are easy to describe, which is good because of theorems like Jordan-Hölder. However,
the indecomposable representations are also very important: every finite-dimensional representation decomposes as
a direct sum of indecomposables, uniquely up to reordering. We can describe the indecomposable projectives fairly
easily as well; the full list of indecomposables is more complicated, see [KJ16].

Definition 2.10 (𝑃 (𝑖)): Define the representations 𝑃 (𝑖) for 𝑖 ∈ 𝐼 to be the −→𝑄 -representation associated to the
left C−→𝑄 -module (C−→𝑄 )𝑒𝑖 , spanned by all paths starting at 𝑖 .

Note that the 𝑃 (𝑖) are clearly projective, as C−→𝑄 =
⊕

𝑖∈𝐼 𝑃 (𝑖). They’re characterized by the fact that for any −→𝑄 -
representation 𝑉 , we have Hom−→

𝑄
(𝑃 (𝑖),𝑉 ) = 𝑉𝑖 .

Theorem 2.11: Assume −→𝑄 is acyclic. Then {𝑃 (𝑖) | 𝑖 ∈ 𝐼 } are the full list of nonzero projective indecomposables
in Rep

−→
𝑄 .

2.4 Grothendieck group

Definition 2.12 (𝐾 (−→𝑄 )): Let 𝐾 (−→𝑄 ) B 𝐾 (Rep−→𝑄 ), the Grothendieck group of the abelian category Rep
−→
𝑄 .

Definition 2.13 (graded dimension): Define the graded dimension dim𝑉 ∈ Z𝐼 to be the |𝐼 |-tuple given by
(dim𝑉 )𝑖 = dim𝑉𝑖 .

Theorem 2.14: Let −→𝑄 be acyclic. Then the graded dimension map dim induces an isomorphism 𝐾 (−→𝑄 ) ∼−→ Z𝐼 .

Definition 2.15: Define the number ⟨𝑉 ,𝑊 ⟩ of two −→𝑄 -representations 𝑉 ,𝑊 to be

⟨𝑉 ,𝑊 ⟩ B
∑︁
𝑖

(−1)𝑖 dimExt𝑖 (𝑉 ,𝑊 ) = 𝜒 (R𝑉 ,𝑊 )) .

Remark 2.16: It’s known that we can always take a two-step projective resolution of any −→𝑄 -representation,
hence the category Rep

−→
𝑄 is hereditary, i.e. all Ext>1 vanish.

It turns out that the Euler form is very insensitive to the representation itself.
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Theorem 2.17: The number ⟨𝑉 ,𝑊 ⟩ depends only on the graded dimensions of the representations, and hence
descends to a bilinear form on Z𝐼 , called the Euler form. In fact, for v,w ∈ Z𝐼 ,

⟨v,w⟩ =
∑︁
𝑖∈𝐼

v𝑖 ·w𝑖 −
∑︁

𝑒 :𝑖→𝑗∈Ω
v𝑖w𝑗 .

Note that the Euler form is not symmetric, so we’ll frequently use the symmetrized Euler form

(v,w) B ⟨v,w⟩ + ⟨w, v⟩.

Remark 2.18: Note that the symmetrized Euler form is independent of the orientation of −→𝑄 .

3 Stability conditions

Fix a finite acyclic quiver −→𝑄 . We want to study stability conditions on Rep
−→
𝑄 .

3.1 Moduli space of
−→
𝑄 -representations

In order to discuss stability conditions on −→𝑄 -representations, we need to enumerate all isomorphism classes of them.
We know that the class of a −→𝑄 -representation 𝑉 depends only on its graded dimension dim𝑉 ∈ Z𝐼 ; however, there
may be many isomorphism classes of such representations. So let’s fix some v ∈ Z𝐼 and study all −→𝑄 -representations
with graded dimension v.

Let’s consider what such a𝑉 would look like. We know that dim𝑉𝑖 = v𝑖 , so𝑉𝑖 = Cv𝑖 . It only remains to parametrize
the morphisms between the 𝑉𝑖 . So define

Rv B
⊕

𝑒 :𝑖→𝑗∈Ω
HomC (Cv𝑖 ,Cv𝑗 ).

However, each isomorphism class of representation appears many times; isomorphisms are given by invertible maps
𝑉𝑖
∼−→ 𝑉𝑖 for all 𝑖 ∈ 𝐼 , so we need to quotient by this. Define

GLv B
∏
𝑖∈𝐼

GLv𝑖 .

Then GLv naturally acts on Rv by conjugation:

(𝑔𝑖 )𝑖∈𝐼 · (𝜑𝑒 )𝑒 :𝑖→𝑗∈Ω = (𝑔 𝑗𝜑𝑒𝑔−1𝑖 )𝑒 :𝑖→𝑗 .

It’s clear that

{GLv-orbits inRv} ←→ {isomorphism classes of−→𝑄 -representations with graded dimension v}.

So we need to make sense Rv/GLv, or whatever is the appropriate analogue of that quotient in the world of vari-
eties.

3.2 GIT quotients
Let G be a reductive algebraic group acting algebraically on an affine algebraic variety 𝑀 . Of course, in our setup,
we take G = GLv and 𝑀 = Rv. This subsection explains GIT quotients; we won’t really need it for studying
stability conditions on quiver representations, since the main focus is actually on twisted GIT quotients (see §3.3),
but twisted GIT quotients are in some sense a generalization of GIT quotients, so this subsection may be helpful to
the reader.
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The idea is that we want to build a moduli space for the G-orbits in 𝑀 , i.e., a scheme version of 𝑀/G (which is a
perfectly reasonable topological space, but rarely has many useful properties beyond that). This is actually rather
hard, because the orbits come in many varying sizes and shapes. If we want the moduli space to actually be a scheme
(even an affine variety) so that we can do our best with constructing quotients in the category of schemes (or affine
varieties), we’ll need to compromise and give up a lot.

Definition 3.1 (GIT quotient): We define the GIT quotient𝑀 // G B SpecC[𝑀]G.

This is supposed to be our scheme version of the topological quotient𝑀/G. It is indeed a scheme, and even an affine
variety (the algebra C[𝑀]G is finitely-generated due to HIlbert). However, topologically, the points of𝑀 //G are only
the closed orbits in𝑀 , not all orbits. There’s a natural topological map𝑀/G→ 𝑀 //G (sending a G-orbit O to the
maximal ideal in C[𝑀]G of functions vanishing on O). However, whenever two orbits O,O′ ∈ 𝑀/G “intersect,” i.e.,
O ∩ O′ ≠ ∅, then they get identified in 𝑀 // G. One way to understand this is that the G-orbits form a stratification
of 𝑀 , hence there’s a partial order on the orbits where O ≤ O′ ←→ O ⊂ O′, and the closed orbits are exactly the
minimal elements of this partial ordering. The GIT quotient thus only remembers the minimal elements, i.e., the
closed sets.

Example 3.2: Let G𝑚 ↷ A2 by the standard scaling action on both coordinates. We have many orbits: namely,
we have the unique closed orbit {(0, 0)}, and then we have a ton of dimension one orbits indexed by the ratio
(𝑎, 𝑏) ↦→ 𝑏/𝑎. However, the GIT quotient only cares about the closed orbits; here, there’s only one, so the GIT
quotient is SpecC, which is just a point. This can also be computed by checking the G𝑚-invariants in C[𝑥,𝑦],
for which we quickly find that there are none except the constants.
So the GIT quotient can lose quite a lot of information.

3.3 Twisted GIT quotient
Once again, let G be a reductive algebraic group acting algebraically on an affine algebraic variety 𝑀 ; in our setup,
we take G = GLv and𝑀 = Rv.

We will review the theory of twisted GIT quotients, which will actually be the relevant theory in our case. Let
𝜒 : G→ G𝑚 be a character. Define

C[𝑀]G,𝜒 B {𝑓 ∈ C[𝑀] | 𝑓 (𝑔 ·𝑚) = 𝜒 (𝑔) · 𝑓 (𝑚)},

the relative invariants. We get a graded algebra ⊕
𝑛≥0
C[𝑀]G,𝜒𝑛 ,

and Hilbert’s theorem implies that it is finitely generated.

Definition 3.3 (twisted GIT quotient): The twisted GIT quotient is defined to be

𝑀 //𝜒 G B Proj
(⊕
𝑛≥0
C[𝑀]G,𝜒𝑛

)
.

The 0th graded component, C[𝑀]G,𝜒0
= C[𝑀]G recovers the standard GIT quotient𝑀 //G. Thus we get a projective

morphism
𝜋 : 𝑀 //𝜒 G→ 𝑀 // G. (1)

3.4 GIT stability
We continue the setup as in §3.3.
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Definition 3.4 (GIT (semi)stability): Extend the action of G on 𝑀 to an action on 𝑀 × A1 by 𝑔(𝑚, 𝑧) B
(𝑔(𝑚), 𝜒−1 (𝑔)𝑧).
A point 𝑥 ∈ 𝑀 is 𝜒-semistable if for any nonzero 𝑧 ∈ C − {0}, the closure of the G-orbit of (𝑥, 𝑧) is disjoint
from the zero section𝑀 × {0}. We denote the set of 𝜒-semistable points of𝑀 by𝑀𝑠𝑠

𝜒 .
A point 𝑥 ∈ 𝑀 is 𝜒-stable if it is 𝜒-semistable, has finite stabilizer G𝑥 ⊂ G, and for any nonzero 𝑧 the G-orbit
of (𝑥, 𝑧) is closed in 𝑀 × A1. In fact, this is equivalent to the G-orbit of 𝑥 being closed in 𝑀𝑠𝑠

𝜒 . We denote the
set of 𝜒-stable points of𝑀 by𝑀𝑠

𝜒 .

To describe these conditions more explicitly, we’ll make frequent use of:

Theorem 3.5 (Geometric reductivity principle): If𝑋,𝑌 ⊂ 𝑀 are closed𝐺-invariant subvarieties and𝑋 ∩𝑌 =

∅, then there exists a 𝐺-invariant polynomial 𝑓 such that 𝑓 |𝑋 = 0 and 𝑓 |𝑌 = 1.

We immediately deduce a technical condition about 𝜒-semistability.

Corollary 3.6: A point 𝑥 ∈ 𝑀 is 𝜒-semistable iff there exists 𝑓 ∈ C[𝑀]G,𝜒𝑛 for some 𝑛 ≥ 1, for which 𝑓 (𝑥) ≠ 0.

Proof. Suppose 𝑥 is 𝜒-semistable. We apply the geometric reductivity principle (3.4) to the G-action on 𝑀 × A1,
which tells us there’s a function 𝑓 ∈ C[𝑀 × A1]G such that 𝑓 |𝑀×{0} = 0 and 𝑓 |G· (𝑥,1) ≠ 0. Since 𝑓 ∈ C[𝑀 × A1]G,
and G acts on the A1-component by 𝜒−1, we know that G must act correspondingly by 𝜒 on the 𝑀-coordinate;
thus we can write

𝑓 (𝑥, 𝑧) =
∑︁
𝑛≥0

𝑓𝑛 (𝑥)𝑧𝑛, 𝑓𝑛 ∈ C[𝑀]G,𝜒
𝑛

.

Now by hypothesis 𝑓 |𝑀×{0} = 0, so 𝑓 (𝑚, 0) = 𝑓0 (𝑚) = 0 =⇒ 𝑓0 = 0. But since 𝑓 is not identically zero (it is
nonzero on the closure of the G-orbit of (𝑥, 1)), then there must be some 0 ≠ 𝑓𝑛 ∈ C[𝑀]G,𝜒

𝑛 with 𝑓𝑛 (𝑥) ≠ 0.
In the other direction, if 𝑓 ∈ C[𝑀]G,𝜒𝑛 is such that 𝑓 (𝑥) ≠ 0, then the function 𝑓 B (𝑥, 𝑧) ↦→ 𝑓 (𝑥) ·𝑧𝑛 isG-invariant
on𝑀 ×A1. Since 𝑓 (𝑥) ≠ 0, it’s clear that for any 𝑧 ≠ 0, then 𝑓 (𝑥, 𝑧) ≠ 0, hence is a nonzero constant on the entire
G-orbit G · (𝑥, 𝑧), hence is a nonzero constant on the closure G · (𝑥, 𝑧) as well. But 𝑓 (𝑚, 0) = 𝑓 (𝑚) · 0𝑛 = 0, so
𝑓 |𝑀×{0} = 0. It follows that G · (𝑥, 𝑧) ∩𝑀 × {0} = ∅, so 𝑥 ∈ 𝑀𝑠𝑠

𝜒 . □

Corollary 3.7:
a) 𝑀𝑠𝑠

𝜒 ⊂ 𝑀 is open and G-invariant (but possibly empty).
b) For𝑁 ∈ Z>0, 𝑥 ∈ 𝑀 is 𝜒-semistable iff it is 𝜒𝑁 -semistable. Thus, the notion of 𝜒-semistable can be defined

for any rational character 𝜒 ∈ 𝑋 (G) ⊗Z Q.
c) Every 𝑥 ∈ 𝑀𝑠𝑠

𝜒 defines a maximal ideal 𝐽𝑥 B {𝑓 | 𝑓 (𝑥) = 0} ⊂
⊕

𝑛≥0 C[𝑀]G,𝜒
𝑛 , and is not the irrelevant

ideal. Thus we have a natural map

𝑀𝑠𝑠
𝜒 /G→ 𝑀 //𝜒 G, 𝑥 ↦→ 𝐽𝑥 .

In lieu of this, it would be nice to understand the map𝑀𝑠𝑠
𝜒 /G→ 𝑀 //𝜒 G.

Theorem 3.8:
a) The map𝑀𝑠𝑠

𝜒 /G→ 𝑀 //𝜒 G is surjective.
b) Two points 𝑥,𝑦 ∈ 𝑀𝑠𝑠

𝜒 /G (corresponding to semistable G-orbits O𝑥 ,O𝑦 ⊂ 𝑀𝑠𝑠
𝜒 ) are mapped to the same

point in𝑀 //𝜒 G iff the closures of their orbits (taken in𝑀𝑠𝑠
𝜒 ) intersect, i.e., O𝑥 ∩ O𝑦 ∩𝑀𝑠𝑠

𝜒 ≠ ∅.
c) As a topological space,𝑀 //𝜒 G = 𝑀𝑠𝑠

𝜒 /∼, where 𝑥 ∼ 𝑦 iff the closures of their orbits in𝑀𝑠𝑠
𝜒 intersect.

d) In fact,𝑀 //𝜒 G = {closed orbits in𝑀𝑠𝑠
𝜒 }. (Note that this is weaker than being closed in𝑀 .)

Using this explicit description of𝑀 //𝜒 G, we can explicitly describe the map 𝜋 : 𝑀 //𝜒 G→ 𝑀 // G from (1).
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Theorem 3.9: Let 𝑥 ∈ 𝑀𝑠𝑠
𝜒 and denote [𝑥] its image in𝑀 //𝜒 G. Then

𝜋 ( [𝑥]) = the unique closed orbit in𝑀 contained in O𝑥 .

Proof. Let O1 be the unique closed orbit in O𝑥 . For 𝑓 ∈ C[𝑀]G, we can verify that 𝑓 (O1) = 𝜋∗ 𝑓 (O𝑥 ). □

So more or less, what’s happening is that when you take a GIT quotient, you form a partial ordering on the orbits
(by containment of the closure of the orbits); the closed orbits are the minimal ones, and the GIT quotient only
remembers the minimal ones. So the GIT quotient 𝑀 // G remembers only the smallest G-orbits in 𝑀 . But the
twisted GIT quotient𝑀 //𝜒 G only requires that the orbits are closed in𝑀𝑠𝑠

𝜒 ⊂ 𝑀 ; this is weaker than being closed in
𝑀 , and the map 𝜋 : 𝑀 //𝜒 G→ 𝑀 //G “remembers” the rest of the orbit as we add back the complement𝑀 \𝑀𝑠𝑠

𝜒 , and
then sends the closed-in-𝑀𝑠𝑠

𝜒 -but-not-in-𝑀 orbits to the true minimal closed orbit contained in its closure.

We’d like to say things about stable points as well. Recall that the property of being stable implies that their G-orbits
intersect iff their closures intersect in 𝑀𝑠𝑠

𝜒 , hence by Theorem 3.4c, distinct stable orbits define distinct points in
𝑀 //𝜒 G¡ so

𝑀𝑠
𝜒 ⊂ 𝑀 //𝜒 G.

Theorem 3.10: Assume𝑀𝑠
𝜒 ≠ ∅.

a) 𝑀𝑠
𝜒 is open in𝑀𝑠𝑠

𝜒 , and thus in𝑀 .
b) If 𝑀 is irreducible (which it will be for us - it’ll be Rv), then 𝑀𝑠

𝜒 is dense in 𝑀𝑠𝑠
𝜒 , and 𝑀𝑠

𝜒/G is dense in
𝑀 //𝜒 G.

c) If 𝑀 is nonsingular (again, it will be for us) and for every 𝑥 ∈ 𝑀𝑠
𝜒 , the stabilizer G𝑥 is trivial, then 𝑀𝑠

𝜒/G
is a nonsingular variety of dimension dim𝑀 − dimG.

Finally, we’ll also make note of a numerical criterion which detects (semi)stability.

Theorem 3.11 (Mumford): A point 𝑥 ∈ 𝑀 is semistable (respectively stable), iff for any one-parameter sub-
group 𝜆 : G𝑚 → G such that lim𝑡→0 𝜆(𝑡) · 𝑥 exists, then ⟨𝜒, 𝜆⟩ ≥ 0 (respectively, ⟨𝜒, 𝜆⟩ > 0, for nontrivial
𝜆).

3.5 Classical stability

Our lattice will be 𝐾 (−→𝑄 ) ≃ Z𝐼 . We first need to fix a linear functional 𝜃 : C𝐼 → C.

Definition 3.12 (slope): Define the 𝜃-slope of a −→𝑄 -representation 𝑉 to be

𝜇𝜃 (𝑉 ) =
𝜃 (dim𝑉 )
dim𝑉 ,

where dim𝑉 B
∑

𝑖 (dim𝑉 )𝑖 is the total dimension of the vector spaces.

Definition 3.13 (classical (semi)stability): A representation 𝑉 is (classically) 𝜇-semistable if for every
proper nonzero submodule𝑀 ⊂ 𝑉 , then 𝜇 (𝑀) ≤ 𝜇 (𝑉 ). It is stable if additionally 𝜇 (𝑀) < 𝜇 (𝑉 ).

Remark 3.14:This classical notion of (semi)stability is analogous to the classical notion of (semi)stable sheaves
on smooth projective varieties.

3.6 The stability conditions agree

Fix 𝜃 = (𝜃𝑖 )𝑖∈𝐼 a linear functional on C𝐼 , and define 𝜇𝜃 as above. Define the character of GLv by

𝜒𝜃 : GLv ∋ (𝑔𝑖 )𝑖∈𝐼 ↦→
∏
𝑖∈𝐼
↦→ det(𝑔𝑖 )𝜇𝜃 (v)−𝜃𝑖 ∈ C× .
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We have two notions of a representation 𝑉 of graded dimension v being (semi)stable: one from the GIT sense, and
one from the classical sense.

Theorem 3.15: A −→𝑄 -representation 𝑉 of graded dimension v is 𝜒𝜃 -(semi)stable in the GIT sense (as a point in
Rv) iff it is 𝜇𝜃 -(semi)stable in the classical sense.

Proof. We’ll just prove it for semistable; the proof for stable is exactly the same, but replacing all of the ≤ with <.
The key is to leverage Mumford’s criterion (3.4) on the GIT side with filtrations on the classical side, so we need
to understand how one-parameter subgroups interact with filtrations.

Lemma 3.16: Fix 𝑉 ∈ Rv, a
−→
𝑄 -representation such that dim𝑉 = v. Let 𝑉 =

(
{𝑉𝑖 }𝑖∈𝐼 , {𝜑𝑒 }𝑒∈Ω

)
.

To a one-parameter subgroup 𝜆 : G𝑚 → GLv such that lim𝑡→0 𝜆(𝑡) exists, we obtain a finite filtration of𝑉 by
subrepresentations. Conversely, to each (necessarily finite) filtration of 𝑉 by subrepresentations, we obtain
(non-uniquely) a one-parameter subgroup 𝜆 such that lim𝑡→0 𝜆(𝑡) exists.

Remark 3.17: We are not claiming that these are inverse operations; however, they are inverses in one
direction: to a filtration of 𝑉 , we produce a one-parameter subgroup 𝜆 whose limit exists, and the filtration
we obtain from 𝜆 recovers our original filtration. The failure of the reverse composition is due to the choice
of direct summand complement, so there are many one-parameter subgroups we could choose inducing the
same filtration.

Proof. First suppose we have a one-parameter subgroup 𝜆. We already have an action GLv ↷ Rv, hence 𝜆
induces an action of G𝑚 on each𝑉𝑖 , 𝑖 ∈ 𝐼 . But a G𝑚-action is the same as a Z-grading, hence each𝑉𝑖 decomposes
as

⊕
𝑛∈Z𝑉

(𝑛)
𝑖

, where 𝜆(𝑡) |
𝑉
(𝑛)
𝑖

= 𝑡𝑛 . Write 𝑉 ≥𝑛
𝑖
B

⊕
𝑚≥𝑛𝑉

(𝑚)
𝑖

.

Now for each edge 𝑒 : 𝑖 → 𝑗 ∈ Ω, the linear map 𝜑𝑒 : 𝑉𝑖 → 𝑉𝑗 decomposes into a direct sum 𝜑
𝑚,𝑛
𝑒 : 𝑉 (𝑛)

𝑖
→ 𝑉

(𝑚)
𝑗

,
with action of 𝜆(𝑡) by

𝜆(𝑡) · 𝜑𝑚,𝑛
𝑒 = 𝜆(𝑡) |𝑉𝑗

· 𝜑𝑚,𝑛
𝑒 · 𝜆(𝑡) |−1𝑉𝑖

= 𝑡𝑚 · 𝜑𝑚,𝑛
𝑒 · 𝑡−𝑛 = 𝑡𝑚−𝑛𝜑𝑚,𝑛

𝑒 .

So the limit lim𝑡→0 𝜆(𝑡) existing implies that for𝑚 < 𝑛, we have 𝜑𝑚,𝑛
𝑒 = 0, otherwise the 𝜆-action blows 𝜑𝑚,𝑛

𝑒

up to infinity. Thus 𝜑𝑒 always increases the weights (of the 𝜆-action), hence we have well-defined maps 𝜑𝑒 :
𝑉 ≥𝑛
𝑖
→ 𝑉 ≥𝑛

𝑗
for all 𝑒 ∈ Ω, and thus 𝑉 ≥𝑛 B

({
𝑉 ≥𝑛
𝑖

}
𝑖∈𝐼 , {𝜑𝑒 }}𝑒∈Ω

)
defines a subrepresentation. Thus from 𝜆 we

obtain a filtration · · · ⊆ 𝑉 ≥𝑛+1 ⊆ 𝑉 ≥𝑛 ⊆ 𝑉 ≥𝑛−1 ⊆ · · · of 𝑉 by subrepresentations, and it must be finite because
𝑉 is finite-dimensional.
On the other hand, let’s suppose we have some finite filtration 𝑉 = 𝑉 𝑘 ⊇ 𝑉 𝑘+1 ⊇ · · · ⊇ 𝑉 𝑘+𝑛 = 0 of 𝑉 by
subrepresentations. Then we can artificially construct a one-parameter subgroup (whose limit exists) by choos-
ing some direct summand complement to each 𝑉 𝑖+1 in 𝑉 𝑖 , and declaring that 𝜆(𝑡) acts on this direct summand
complement by 𝑡𝑖 . □

We also need to know one more thing: what ⟨𝜒𝜃 , 𝜆⟩ is.

Lemma 3.18: Fix some𝑉 as before. Let 𝜆 be a one-parameter subgroup whose limit exists; by Lemma 3.6, we
get an induced filtration by 𝑉 ≥𝑛 . Then ⟨𝜒𝜃 , 𝜆⟩ =

∑
𝑛∈Z

(
dim(𝑉 ≥𝑛)𝜇𝜃 (v) − 𝜃 (dim𝑉 ≥𝑛)

)
.

8



Proof. We can compute the composition 𝜒𝜃 ◦ 𝜆 directly:

𝜒𝜃 (𝜆(𝑡)) =
∏
𝑖∈𝐼

det(𝜆(𝑡)𝑖 )𝜇𝜃 (v)−𝜃𝑖 =
∏
𝑖∈𝐼

∏
𝑛∈Z

det
(
𝜆(𝑡) |

𝑉
(𝑛)
𝑖

)𝜇𝜃 (v)−𝜃𝑖
=

∏
𝑖∈𝐼

∏
𝑛∈Z

𝑡𝑛 · (dim𝑉
(𝑛)
𝑖
) · (𝜇𝜃 (v)−𝜃𝑖 ) .

This computation tells us ⟨𝜒𝜃 , 𝜆⟩:

⟨𝜒𝜃 , 𝜆⟩ =
∑︁
𝑖∈𝐼

∑︁
𝑛∈Z

𝑛 · (dim𝑉 (𝑛)
𝑖
) · (𝜇𝜃 (v) − 𝜃𝑖 ),

=
∑︁
𝑛∈Z

𝑛 ·
(
dim(𝑉 ≥𝑛/𝑉 ≥𝑛+1)𝜒𝜃 (v) − 𝜃 (dim𝑉 ≥𝑛/𝑉 ≥𝑛+1)

)
,

=
∑︁
𝑛∈Z

𝑛
(
dim(𝑉 ≥𝑛)𝜇𝜃 (v) − 𝜃 (dim𝑉 ≥𝑛)

)
− 𝑛

(
dim(𝑉 ≥𝑛+1)𝜇𝜃 (v) − 𝜃 (dim𝑉 ≥𝑛+1)

)
,

=
∑︁
𝑛∈Z

(
dim(𝑉 ≥𝑛)𝜇𝜃 (v) − 𝜃 (dim𝑉 ≥𝑛)

)
.

□

Now let’s return to the proof. Suppose 𝑉 is 𝜒𝜃 -semistable (in the GIT sense). We want to show that it is 𝜇𝜃 -
semistable (in the classical sense). So let 𝑀 ⊂ 𝑉 be any proper nonzero subrepresentation, and treat this as the
(very short) filtration 0 ⊂ 𝑀 ⊂ 𝑉 . Then using Lemma 3.6, we can construct some one-parameter subgroup 𝜆. Since
𝑉 is 𝜒𝜃 -semistable, Mumford’s criterion (3.4) implies that 0 ≤ ⟨𝜒𝜃 , 𝜆⟩. But in Lemma 3.6, we compute that

0 ≤ ⟨𝜒𝜃 , 𝜆⟩,
= dim(0)𝜇𝜃 (v) − 𝜃 (0) + dim(𝑀)𝜇𝜃 (v) − 𝜃 (dim𝑀) + dim(𝑉 )𝜇𝜃 (v) − 𝜃 (v),
= dim(𝑀)𝜇𝜃 (v) − 𝜃 (dim𝑀),

=⇒ 𝜇𝜃 (𝑀) ≤ 𝜇𝜃 (v) = 𝜇𝜃 (𝑉 ),

so we conclude that 𝑉 being 𝜒𝜃 -semistable implies 𝑉 is 𝜇𝜃 -semistable.
Conversely, suppose𝑉 is 𝜇𝜃 -semistable. To show that𝑉 is 𝜒𝜃 -semistable, we just need to show that ⟨𝜒𝜃 , 𝜆⟩ ≥ 0 for
every 𝜆 whose limit exists. For any such 𝜆, Lemma 3.6 gives us a filtration of 𝑉 by subrepresentations 𝑉 ≥𝑛 . Then
since 𝑉 is 𝜇𝜃 -semistable, we must have

𝜇𝜃 (𝑉 ≥𝑛) ≤ 𝜇𝜃 (𝑉 ) = 𝜇𝜃 (v)

for all 𝑛; this implies that
dim(𝑉 ≥𝑛)𝜇𝜃 (v) − 𝜃 (dim𝑉 ≥𝑛) ≥ 0.

Then Lemma 3.6 computes that

⟨𝜒𝜃 , 𝜆⟩ =
∑︁
𝑛∈Z

(
dim(𝑉 ≥𝑛)𝜇𝜃 (v) − 𝜃 (dim𝑉 ≥𝑛)

)
≥ 0,

hence Mumford’s criterion (3.4) implies that 𝑉 is 𝜒𝜃 -semistable. □

3.7 A worked-out example
Let’s consider the quiver 𝐴2:

𝐴2 B • •.

There are two vertices, hence two simple representations, and so

𝐾 (𝐴2) ≃ Z2 .

There are exactly three indecomposable representations, up to isomorphism:

• 𝑉1: C→ 0.
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• 𝑉2: 0→ C.
• 𝑉3: C

id−→ C.

Note that 𝑉1 and 𝑉2 are the simple representations associated to the vertices, see (2.3).

Remark 3.19: In this case, 𝐴2 is what’s known as a Dynkin quiver, in that its underlying (undirected) graph
is a Dynkin diagram. It corresponds to the simple Lie algebra 𝔰𝔩3, and it’s known that the indecomposable
representations are in bijection with the positive roots of 𝔰𝔩3, of which it has three. Furthermore, to a positive
root 𝛼 =

∑
𝑖∈𝐼 𝑛𝑖𝛼𝑖 , where 𝛼𝑖 are the simple roots, the associated indecomposable representation has graded

dimension (𝑛𝑖 )𝑖∈𝐼 . In our case, there are three positive roots: the simple roots 𝛼1 and 𝛼2 (which must have
graded dimension (1, 0) and (0, 1), respectively), and the positive root 𝛼1 + 𝛼2 which has graded dimension
(1, 1).

Let us fix our graded dimension to be v = (1, 1), so that GLv = GL1 × GL1 = C× × C× . We can easily see that there
are exactly two representations of graded dimension v: these are 𝑉1 ⊕ 𝑉2 and 𝑉3. Let us take 𝜃 = (𝑎, 𝑏) ∈ Z2 some
arbitrary linear functional, and let’s study when these representations are (semi)stable.

Example 3.20 (semistability for 𝑉3): First, let’s examine the classical case. First, we compute:

𝜇𝜃 (𝑉3) =
𝜃 ((1, 1))
1 + 1 =

𝑎 + 𝑏
2 .

Now the only subrepresentation of 𝑉3 is 𝑉2, so we need to check that 𝜇𝜃 (𝑉2) ≤ 𝜇𝜃 (𝑉3). We have

𝜇𝜃 (𝑉2) =
𝜃 ((0, 1))
0 + 1 = 𝑏,

so
𝑉3 is 𝜇𝜃 -semistable ⇐⇒ 𝜇𝜃 (𝑉2) ≤ 𝜇𝜃 (𝑉3) ⇐⇒ 𝑏 ≤ 𝑎.

Now let’s look at the GIT side. Our character is

𝜒𝜃 : C× × C× ∋ (𝑠, 𝑡) ↦→ 𝑔
𝑎+𝑏
2 −𝑎 · 𝑠 𝑎+𝑏

2 −𝑏 =

(
𝑠

𝑔

) 𝑎−𝑏
2
.

Now a one-parameter subgroup 𝜆 : C× → C× × C× is just a product of two characters, 𝑡 ↦→ (𝑡𝑚, 𝑡𝑛); so take
𝜆 = (𝑚,𝑛). So we started with 𝑉3 =

(
C
·1−→ C

)
; we compute that

𝜆(𝑡) ·𝑉3 =
(
C
·𝑡𝑛−𝑚−−−−→ C

)
.

It follows that the limit lim𝑡→0 𝜆(𝑡) · 𝑉3 exists iff 𝑛 ≥ 𝑚; so we need only consider one-parameter subgroups 𝜆
corresponding to (𝑛,𝑚) with 𝑛 ≥ 𝑚. Now we just compute that

𝜒𝜃 ◦ 𝜆 : 𝑡 ↦→
(
𝑡𝑛

𝑡𝑚

) 𝑎−𝑏
2

= 𝑡 (𝑛−𝑚) (𝑎−𝑏 )/2 .

Then

𝑉3 is 𝜒𝜃 -semistable ⇐⇒ ⟨𝜆𝑚,𝑛, 𝜒𝜃 ⟩ ≥ 0 for all 𝑛 ≥ 𝑚 ⇐⇒ (𝑛 −𝑚) (𝑎 − 𝑏)
2 ≥ 0 for all 𝑛 ≥ 𝑚 ⇐⇒ 𝑎 ≥ 𝑏.

So we conclude that the two notions of stability are indeed exactly the same here.
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Example 3.21 (stability for 𝑉3): Running through the previous argument, we have

𝑉3 is 𝜇𝜃 -stable ⇐⇒ 𝑎 > 𝑏,

and
𝑉3 is 𝜒𝜃 -stable ⇐⇒

(𝑛 −𝑚) (𝑎 − 𝑏)
2 > 0 for all 𝑛 > 𝑚 ⇐⇒ 𝑎 > 𝑏.

So once again, they agree. (Note that this time, we need to use the modified version of Mumford’s criterion (3.4),
which requires 𝜆 to be nontrivial, which is equivalent to 𝑛 > 𝑚.)

Example 3.22 (semistability for𝑉1 ⊕𝑉2): Let’s again start with the classical case. We have two subrepresen-
tations of 𝑉1 ⊕ 𝑉2, namely 𝑉1 and 𝑉2. Then 𝜇𝜃 (𝑉1) = 𝑎, 𝜇𝜃 (𝑉2) = 𝑏, and 𝜇𝜃 (𝑉1 ⊕ 𝑉2) = 𝑎+𝑏

2 . Therefore

𝑉1 ⊕ 𝑉2 is 𝜇𝜃 -semistable ⇐⇒ 𝜇𝜃 (𝑉1), 𝜇𝜃 (𝑉2) ≤ 𝜇𝜃 (𝑉1 ⊕ 𝑉2) ⇐⇒ 𝑎 = 𝑏.

Now let’s look at the GIT side. Note that we started with

𝑉1 ⊕ 𝑉2 =
(
C

0−→ C
)
,

so for any one-parameter subgroup 𝜆, then 𝜆(𝑡) does nothing to 𝑉1 ⊕𝑉2. Therefore the limit always exists, and
so

𝑉1 ⊕ 𝑉2 is 𝜒𝜃 -semistable ⇐⇒ 0 ≤ ⟨𝜆, 𝜒𝜃 ⟩ for all 𝜆 ⇐⇒
(𝑛 −𝑚) (𝑎 − 𝑏)

2 ≥ 0 for all 𝑛,𝑚 ⇐⇒ 𝑎 = 𝑏.

So once again, the two notions agree.

Example 3.23 (stability for𝑉1⊕𝑉2): To be 𝜇𝜃 semistable, we’d need both 𝑎 > 𝑏 and 𝑏 > 𝑎, which is impossible,
so actually 𝑉1 ⊕ 𝑉2 is never 𝜇𝜃 -semistable (for any 𝜃 ).
On the other hand, since every one-parameter subgroup acts trivially, 𝑉1 ⊕ 𝑉2 cannot be 𝜒𝜃 -semistable.
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